The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X X^2 X^2 X^2 X^2 X^2 X^2 X^2  1  0  0  0  0  0  0  0  X  1  1  1  1  1  1  1
 0 X^2  0  0  0 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0 X^2 X^2 X^2 X^2  0  0  0  0  0  0 X^2  0 X^2 X^2  0
 0  0 X^2  0 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2  0  0
 0  0  0 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0

generates a code of length 69 over Z2[X]/(X^3) who�s minimum homogenous weight is 69.

Homogenous weight enumerator: w(x)=1x^0+32x^69+20x^70+6x^72+4x^74+1x^80

The gray image is a linear code over GF(2) with n=276, k=6 and d=138.
This code was found by Heurico 1.16 in 0.142 seconds.